ENZYMES PROTÉOLYTIQUES

Les enzymes protéolytiques sont également impliquées dans divers processus cellulaires, tels que la régulation de l'activité des protéines, la progression du cycle cellulaire et l'apoptose (mort cellulaire programmée).
Les enzymes protéolytiques sont classées en différents types en fonction de leurs mécanismes catalytiques.
Protéase produite par fermentation immergée d'une souche sélectionnée de Bacillus amyloliquefaciens.

Numéro CAS : 37259-58-8
Numéro CE : 253-431-3

Sérine protéinase, 37259-58-8, Sérine endopeptidase, Sérine estérase, Sérine peptidase, Sérine protéase, Séryl protéase, Tryase, Protéinase, sérine, Caldolase, Cérastobine, Clp protéinase, EINECS 253-431-3, alpha-Fibrinogénase, Maxacal, Porzyme 6, protéinase T, enzymes protéolytiques sérine

Les enzymes protéolytiques peuvent être trouvées dans toutes les formes de vie et dans tous les virus.
Ils ont évolué plusieurs fois indépendamment et différentes classes de protéases peuvent effectuer la même réaction par des mécanismes catalytiques complètement différents.

Les enzymes protéolytiques ont été regroupées pour la première fois en 84 familles selon leur relation évolutive en 1993 et classées en quatre types catalytiques : sérine, cystéine, aspartique et métalloprotéolytiques.
Une protéase est une enzyme qui catalyse l'hydrolyse des liaisons peptidiques dans les protéines.

Ces enzymes jouent un rôle crucial dans la digestion des protéines dans les organismes, en les décomposant en peptides plus petits ou en acides aminés individuels.
Les principales classes comprennent les enzymes protéolytiques à sérine, les enzymes protéolytiques à cystéine, les enzymes protéolytiques aspartiques, les enzymes métalloprotéolytiques et les enzymes protéolytiques à la thréonine.

Chaque classe de protéase possède des propriétés distinctes et est impliquée dans des processus biologiques spécifiques.
La sécrétion de protéase par Bacillus amyloliquefaciens peut être inhibée par un traitement avec la cérulénine, un inhibiteur de la synthétase des acides gras.

Une protéase (également appelée peptidase, protéinase ou enzyme protéolytique) est une enzyme qui catalyse la protéolyse, décomposant les protéines en polypeptides plus petits ou en acides aminés uniques et stimulant la formation de nouveaux produits protéiques.
Pour ce faire, ils brisent les liaisons peptidiques au sein des protéines par hydrolyse, une réaction au cours de laquelle l'eau brise les liaisons.

Les enzymes protéolytiques sont impliquées dans de nombreuses voies biologiques, notamment la digestion des protéines ingérées, le catabolisme des protéines (dégradation des anciennes protéines) et la signalisation cellulaire.
En l’absence d’accélérateurs fonctionnels, la protéolyse serait très lente et prendrait des centaines d’années.

Les enzymes protéolytiques thréonine et glutamique n’ont été décrites qu’en 1995 et 2004 respectivement.
Le mécanisme utilisé pour cliver une liaison peptidique consiste à rendre nucléophile un résidu d'acide aminé contenant la cystéine et la thréonine (enzymes protéolytiques) ou une molécule d'eau (enzymes aspartiques, glutamiques et métalloprotéolytiques) afin que la protéase puisse attaquer le groupe carbonyle du peptide.

Une façon de fabriquer un nucléophile consiste à utiliser une triade catalytique, dans laquelle un résidu histidine est utilisé pour activer la sérine, la cystéine ou la thréonine en tant que nucléophile.
Il ne s’agit cependant pas d’un groupe évolutif, car les types de nucléophiles ont évolué de manière convergente dans différentes superfamilles, et certaines superfamilles présentent une évolution divergente vers plusieurs nucléophiles différents.

Les enzymes métalloprotéolytiques, les enzymes protéolytiques aspartiques et glutamiques utilisent leurs résidus de site actif pour activer une molécule d'eau, qui attaque ensuite la liaison scissile.
La protéase peut être très volatile, de sorte qu'une large gamme de substrats protéiques sont hydrolysés.

C'est le cas des enzymes digestives comme la trypsine, qui doivent être capables de diviser l'ensemble des protéines ingérées en fragments peptidiques plus petits.
Les enzymes protéolytiques promiscuité se lient généralement à un seul acide aminé sur le substrat et n'ont donc qu'une spécificité pour ce résidu.
Par exemple, la trypsine est spécifique des séquences.

À l’inverse, certaines enzymes protéolytiques sont hautement spécifiques et clivent uniquement les substrats ayant une certaine séquence.
La coagulation sanguine (telle que la thrombine) et le traitement des polyprotéines virales (telles que la protéase TEV) nécessitent ce niveau de spécificité afin d'obtenir des événements de clivage précis.

Les protéases sont des enzymes qui décomposent les protéines.
Ces enzymes sont fabriquées par des animaux, des plantes, des champignons et des bactéries.

Les protéases décomposent les protéines dans le corps ou sur la peau.
Cela pourrait aider à la digestion ou à la dégradation des protéines impliquées dans l’enflure et la douleur.

Certaines enzymes protéolytiques pouvant être trouvées dans les suppléments comprennent la bromélaïne, la chymotrypsine, la ficine, la papaïne, la serrapeptase et la trypsine.
Les protéases, également appelées peptidases ou protéinases, sont des enzymes qui effectuent la protéolyse.

La protéase est l'une des réactions biologiques les plus importantes.
L'activité protéase a été attribuée à une classe d'enzymes appelées enzymes protéolytiques.

Ces enzymes sont largement répandues et exécutent des processus biologiques importants.
Les enzymes protéolytiques ont évolué pour effectuer ces réactions par de nombreux mécanismes différents et différentes classes de protéases peuvent effectuer la même réaction par des mécanismes catalytiques complètement différents.

Les enzymes protéolytiques se trouvent chez les animaux, les plantes, les bactéries, les archées et les virus.
Les enzymes protéolytiques sont impliquées dans le traitement des protéines, la régulation de la fonction des protéines, l'apoptose, la pathogenèse virale, la digestion, la photosynthèse et de nombreux autres processus vitaux.

Le mécanisme d'action des enzymes protéolytiques les classe soit en enzymes protéolytiques à sérine, cystéine ou thréonine (hydrolases nucléophiles amino-terminales), soit en enzymes protéolytiques aspartiques, métallo et glutamiques (les enzymes protéolytiques glutamiques étant le seul sous-type introuvable jusqu'à présent chez les mammifères).
La protéase des liaisons peptidiques est reconnue comme un mécanisme essentiel et omniprésent pour la régulation d'une myriade de processus physiologiques.

Quatre classes principales d'enzymes protéolytiques ont été couramment utilisées pour décrire les enzymes protéolytiques.
Les enzymes protéolytiques sérine sont probablement les mieux caractérisées.

Cette classe d'enzymes protéolytiques comprend la trypsine, la chymotrypsine et l'élastase.
La classe des cystéines protéases comprend la papaïne, la calpaïne et les cathepsines lysosomales.

Les enzymes protéolytiques aspartiques comprennent la pepsine et la rénine.
Les enzymes métallo-protéolytiques comprennent la thermolysine et la carboxypeptidase A.

Les protéases sont des enzymes qui coupent les liaisons peptidiques dans les protéines.
La protéase sert d'acide aminé nucléophile sur le site actif (de l'enzyme).

On les trouve omniprésents chez les eucaryotes et les procaryotes.
Les protéases se répartissent en deux grandes catégories en fonction de leur structure : de type chymotrypsine (de type trypsine) ou de type subtilisine.

La protéase est un terme général désignant une classe d’enzymes qui hydrolysent les liaisons protéiques peptidiques.
Selon la manière dont le polypeptide est hydrolysé, la protéase peut être divisée en deux types, une endopeptidase et une exopeptidase.

L'endopeptidase clive l'intérieur de la molécule protéique pour former un petit peptide moléculaire.
L'exopeptidase hydrolyse les liaisons peptidiques une par une à partir de l'extrémité du groupe amino libre ou du groupe carboxyle de la molécule protéique, et l'acide aminé est libéré, le premier étant une aminopeptidase et le second étant une carboxypeptidase.

La protéase peut être divisée en sérine protéase, thiol protéase, métallo protéase et aspartique protéase en fonction de son centre actif.
Selon la valeur optimale du pH de la réaction, la protéase est divisée en protéase acide, protéase neutre et protéase alcaline.

La protéase est utilisée dans la production industrielle, principalement l'endopeptidase.
Les enzymes protéolytiques sont largement présentes dans les viscères d’animaux, les tiges de plantes, les feuilles, les fruits et les micro-organismes. Les enzymes protéolytiques microbiennes sont principalement produites par les moisissures et les bactéries, suivies par les levures et les actinomycètes.

Les enzymes protéolytiques ont de nombreux types, les plus importants étant la pepsine, la trypsine, la cathepsine, la papaïne et la subtilisine.
La protéase a une sélectivité stricte pour le substrat de réaction à appliquer.

Les enzymes protéolytiques ne peuvent agir que sur certaines liaisons peptidiques dans les molécules protéiques, telles que les liaisons peptidiques formées par l'hydrolyse catalysée par la trypsine des acides aminés basiques.
La protéase est une protéine largement distribuée et est particulièrement abondante dans le tube digestif des humains et des animaux.

En raison des ressources limitées en animaux et en plantes, la production industrielle de préparations de protéases est principalement préparée par fermentation de micro-organismes tels que Bacillus subtilis et Aspergillus oryzae.
Les enzymes protéolytiques sont une classe de protéines qui décomposent d'autres protéines.

On les appelle aussi protéases.
Les enzymes protéolytiques sont classées selon les acides aminés ou ligands qui catalysent la réaction d'hydrolyse.
Par exemple, les protéases contiennent une sérine dans le site actif.

La protéase est aidée par une histidine voisine et de l'acide aspartique.
Cette combinaison est appelée la triade catalytique et est conservée dans toutes les enzymes protéolytiques sérine.

Les enzymes protéolytiques fonctionnent en deux étapes : premièrement, ils forment une liaison covalente avec la protéine à cliver ; dans la deuxième étape, l’eau entre et libère la seconde moitié de la protéine clivée.
Les enzymes protéolytiques utilisent la cystéine comme nucléophile, tout comme la sérine. Les enzymes protéolytiques utilisent la sérine comme nucléophile.
Les protéases comprennent un certain nombre d'enzymes digestives, notamment la trypsine, la chymotrypsine et l'élastase.

Bien qu’ils contiennent tous les trois mêmes acides aminés qui travaillent ensemble pour catalyser la réaction, appelés triade catalytique, ils diffèrent par l’endroit où ils clivent les protéines.
Cette spécificité est due à une poche de liaison qui contient différents groupes fonctionnels.

La chymotrypsine préfère un gros résidu hydrophobe ; La poche de protéase est grande et contient des résidus hydrophobes.
Dans cette représentation de la poche de liaison, la phénylalanine hydrophobe du substrat est représentée en vert et l'hydrophobie des acides aminés environnants est représentée par des boules grises (hydrophobes) ou violettes (hydrophiles).

La protéase est spécifique des résidus chargés positivement comme la lysine et contient un acide aminé négatif, l'acide aspartique, au fond de la poche.
La protéase préfère un petit résidu neutre ; La protéase a une très petite poche.

Les protéases comprennent des enzymes qui jouent un rôle dans la régulation des processus cellulaires tels que les caspases et la deubiquitinase.
Les caspases hydrolysent les protéines pendant l'apoptose.
Les enzymes protéolytiques jouent un rôle dans la régulation de la dégradation des protéines, par exemple Cdu1 de Chlamydia.

Une autre classe de protéase est celle des enzymes protéolytiques aspartate.
Cette famille comprend les protéases du VIH.

Le VIH produit des protéines protéases sous la forme d'une longue chaîne ; La protéase du VIH clive la protéine longue en unités fonctionnelles.
Parce que la protéase clive les protéines longues, la protéase possède un tunnel pour accueillir le long substrat peptidique, et les « volets » supérieurs de la protéine peuvent s'ouvrir et se fermer pour permettre au substrat d'entrer et aux produits de sortir.

Les enzymes protéolytiques aspartate comprennent deux résidus aspartate dans le site actif, qui augmentent la réactivité d'une molécule d'eau du site actif pour cliver directement la protéine du substrat.
Une troisième classe d'enzymes protéolytiques sont les enzymes métalloprotéolytiques telles que la carboxypeptidase.

Les carboxypeptidases éliminent les acides aminés C-terminaux des protéines.
Le site actif contient du zinc, qui est lié à la protéine par des interactions avec les résidus histidine (H), sérine (S) et acide aspartique (E).

Les enzymes protéolytiques sont des enzymes produites par votre pancréas pour décomposer les protéines de l'alimentation en acides aminés, qui sont utilisés pour la croissance et la réparation des tissus.
Ces enzymes peuvent également réduire l’inflammation et soutenir la fonction immunitaire, même si des recherches supplémentaires sont nécessaires.

Les enzymes protéolytiques (également appelées protéases, peptidases ou protéinases) sont des enzymes qui hydrolysent les liaisons amide au sein des protéines ou des peptides.
La plupart des enzymes protéolytiques agissent d'une manière spécifique, en hydrolysant les liaisons au niveau ou à proximité de résidus spécifiques ou d'une séquence spécifique de résidus contenus dans la protéine ou le peptide substrat.

Les enzymes protéolytiques jouent un rôle important dans la plupart des maladies et processus biologiques, notamment le développement prénatal et postnatal, la reproduction, la transduction du signal, la réponse immunitaire, diverses maladies auto-immunes et dégénératives et le cancer.
Ils constituent également un outil de recherche important, fréquemment utilisé dans l’analyse et la production de protéines.

Les enzymes protéolytiques ont été appelées la version biologique des couteaux suisses, capables de couper de longues séquences de protéines en fragments.
Une protéase est une enzyme qui brise les longues molécules de protéines en forme de chaîne afin qu’elles puissent être digérées.

Ce processus est appelé protéolyse et la protéase transforme les molécules de protéines en fragments plus courts, appelés peptides, et finalement en leurs composants, appelés acides aminés.
Les protéines commencent par une structure solide, complexe et repliée, et elles ne peuvent être décomposées ou désassemblées qu’avec des enzymes protéases.

Le processus de digestion des protéines commence dans l’estomac, où l’acide chlorhydrique déplie les protéines et où l’enzyme pepsine commence à les désassembler.
Le pancréas libère des enzymes protéases (principalement de la trypsine) et, dans les intestins, elles brisent les chaînes protéiques en morceaux plus petits.
Ensuite, les enzymes à la surface et à l’intérieur des cellules intestinales décomposent encore plus les morceaux, de sorte qu’ils deviennent des acides aminés prêts à être utilisés dans tout le corps.

Lorsque ces enzymes protéases ne sont pas présentes dans l’organisme pour décomposer les molécules de protéines, la muqueuse intestinale ne peut pas les digérer, ce qui peut entraîner de graves problèmes de santé.
Les enzymes protéolytiques sont produites par le pancréas et se trouvent également dans certains fruits, bactéries et autres microbes.

Le tube digestif produit trois formes différentes de protéase : le trypsinogène, le chymotrypsinogène et la procarboxypeptidase.
Ces trois enzymes protéolytiques attaquent différentes liaisons peptidiques pour permettre la génération d’acides aminés, les éléments constitutifs des protéines.

Les enzymes protéases sont souvent classées en fonction de leur origine.
Certaines enzymes protéolytiques sont produites dans l’organisme, certaines proviennent de plantes et d’autres encore ont une origine microbienne.

Différents types d’enzymes protéolytiques ont des processus et mécanismes biologiques différents.
Les enzymes protéolytiques sont des enzymes spécialisées dans le clivage des liaisons peptidiques.

Leurs activités peuvent être relativement aveugles, décomposant les polypeptides en leurs éléments de base, ou extrêmement précises, clivant un substrat au niveau d'un résidu spécifique pour modifier l'activité des protéines.
Ces illustrations mettent en évidence des concepts scientifiques qui reposent sur l'activité protéolytique et soulignent l'importance des enzymes protéolytiques dans certains des domaines les plus étudiés de la biologie cellulaire.

Ces enzymes contiennent un résidu sérine dans leur site actif et jouent un rôle crucial dans la digestion (par exemple, la trypsine, la chymotrypsine) et la coagulation sanguine (par exemple, la thrombine).
Enzymes avec un résidu cystéine dans leur site actif, impliquées dans divers processus cellulaires, dont l'apoptose. Les exemples incluent les caspases.

Ces enzymes utilisent un résidu aspartate dans leur site actif et sont impliquées dans la digestion (par exemple, la pepsine) et dans une certaine transformation virale.
Les ions métalliques, généralement le zinc, sont essentiels à l'activité catalytique de ces enzymes.
Les métalloprotéinases matricielles (MMP) en sont un exemple, impliquées dans le remodelage des tissus et la cicatrisation des plaies.

Ces enzymes protéolytiques possèdent un résidu thréonine dans leur site actif et se retrouvent dans certains micro-organismes.
Dans le système digestif, les enzymes protéolytiques décomposent les protéines alimentaires en peptides et acides aminés plus petits, facilitant ainsi leur absorption dans l'intestin grêle.

Les enzymes protéolytiques sont impliquées dans la régulation de divers processus cellulaires, notamment la progression du cycle cellulaire, l'apoptose et la transduction du signal.
Certaines enzymes protéolytiques sont responsables de l'activation ou de l'inactivation des protéines en clivant des liaisons peptidiques spécifiques.

Les enzymes protéolytiques participent aux réponses immunitaires en dégradant les protéines étrangères, telles que celles provenant d'agents pathogènes.
Les enzymes protéolytiques sont utilisées dans les détergents à lessive et les produits de nettoyage pour éliminer les taches à base de protéines.

Les enzymes protéolytiques peuvent être utilisées pour cliver des étiquettes peptidiques spécifiques utilisées dans la production de protéines recombinantes, contribuant ainsi à la purification de la protéine cible.
Les inhibiteurs et activateurs de protéase sont utilisés dans le développement de médicaments pour diverses pathologies, notamment le VIH, le cancer et les maladies neurodégénératives.

Les enzymes protéolytiques sont des outils essentiels en biologie moléculaire pour l’analyse des protéines, les études structure-fonction et la manipulation des protéines.
Les enzymes protéolytiques sont une classe d'enzymes qui catalysent l'hydrolyse des liaisons peptidiques dans les protéines et sont l'une des plus matures.

Au début du 21ème siècle, plus de 900 espèces de protéases microbiennes ont été signalées, les activités biologiques de l'organisme et l'apparition de maladies, telles que la digestion et l'absorption des aliments, la coagulation sanguine, l'hémolyse, l'inflammation, la régulation de la pression artérielle, la cellule l'autolyse de différenciation, le vieillissement, les métastases cancéreuses, l'activation de peptides physiologiquement actifs, etc., ne sont pas liés aux enzymes protéolytiques.

Les enzymes protéolytiques sont étroitement liées aux humains et sont impliquées dans tous les aspects de la vie.
Les enzymes protéolytiques sont largement utilisées dans les domaines alimentaire, pharmaceutique, chimique, détergent, alimentaire et autres, le produit brut a atteint 65 % du marché des enzymes.

La protéase est une sorte d'enzyme qui catalyse l'hydrolyse des protéines, qui est l'enzyme la plus ancienne et la plus approfondie dans l'étude de l'enzymologie.
La source de protéase microbienne est large, les besoins en nutrition cellulaire sont faibles, faciles à cultiver, par rapport aux protéases d'origine animale et végétale, la protéase est plus facile à réaliser une production à grande échelle.

Les premières recherches sur la protéase microbienne, plus concentrées dans la sélection de souches naturelles à haut rendement, l'optimisation des conditions de fermentation et la technologie de transformation en aval, le niveau global de recherche n'est pas élevé, n'ont pas vraiment pris en compte divers aspects de la technologie de production à grande échelle. .
Jusque dans les années 70 du 20e siècle, après l'établissement de la technologie de l'ADN recombinant, des recherches dans le domaine de la biologie moléculaire des protéases ont été menées et l'analyse des séquences, le clonage et l'expression des gènes de protéase ont été réalisés, ce qui a permis de réaliser des recherches à grande échelle. production possible.

Un septième type catalytique d’enzymes protéolytiques, l’asparagine peptide lyase, a été décrit en 2011.
Le mécanisme protéolytique de la protéase est inhabituel puisque, plutôt que l'hydrolyse, la protéase effectue une réaction d'élimination.
Au cours de cette réaction, l'asparagine catalytique forme une structure chimique cyclique qui se clive en résidus d'asparagine dans les protéines dans de bonnes conditions.

Étant donné le mécanisme fondamentalement différent de la protéase, son inclusion en tant que peptidase peut être discutable.
Une classification à jour des superfamilles évolutives de protéases se trouve dans la base de données MEROPS.
Dans cette base de données, les enzymes protéolytiques sont classées d'abord par « clan » (superfamille) en fonction de la structure, du mécanisme et de l'ordre des résidus catalytiques (par exemple le clan PA où P indique un mélange de familles nucléophiles).

Au sein de chaque « clan », les enzymes protéolytiques sont classées en familles sur la base de la similarité des séquences (par exemple les familles S1 et C3 au sein du clan PA).
Chaque famille peut contenir plusieurs centaines d'enzymes protéolytiques apparentées (par exemple, trypsine, élastase, thrombine et streptogrisine au sein de la famille S1).

Les enzymes protéolytiques, étant elles-mêmes des protéines, sont clivées par d'autres molécules de protéase, parfois de la même variété.
Cela agit comme une méthode de régulation de l’activité de la protéase.

Certaines enzymes protéolytiques sont moins actives après autolyse (par exemple la protéase TEV) tandis que d'autres sont plus actives (par exemple le trypsinogène).
Dans le système digestif humain, les enzymes protéolytiques comme la pepsine, la trypsine et la chymotrypsine décomposent les protéines alimentaires en peptides et acides aminés plus petits, facilitant ainsi leur absorption dans l'intestin grêle.

Les enzymes protéolytiques sont couramment utilisées dans les détergents à lessive et les produits de nettoyage pour leur capacité à éliminer les taches à base de protéines.
Ceci est particulièrement efficace pour éliminer les taches comme le sang, l’herbe et la nourriture.

Les enzymes protéolytiques peuvent être utilisées pour attendrir la viande en dégradant le collagène et les tissus conjonctifs.
Les enzymes protéolytiques contribuent au développement des saveurs de certains produits alimentaires en décomposant les protéines en fragments plus petits et plus savoureux.

Transformation des produits laitiers : Les enzymes protéolytiques sont utilisées dans la production de fromage pour modifier la texture et la saveur.
Les enzymes protéolytiques jouent un rôle crucial dans la purification des protéines.

Ils sont utilisés pour cliver les étiquettes de fusion des protéines recombinantes, facilitant ainsi leur isolement et leur purification.
Les inhibiteurs de protéase jouent un rôle important dans le développement de médicaments, en particulier dans le traitement de maladies où l'activité de la protéase doit être modulée.
Par exemple, les inhibiteurs de protéase sont utilisés dans le traitement du VIH.

Les chercheurs modifient et conçoivent des enzymes protéolytiques pour des applications spécifiques.
Cela peut impliquer de modifier leur spécificité de substrat, leur stabilité ou d'autres propriétés pour les adapter à des fins industrielles ou thérapeutiques.

Les enzymes protéolytiques sont des outils précieux pour la recherche en biologie moléculaire et en biochimie.
Des techniques telles que la protéolyse limitée sont utilisées pour étudier la structure, la fonction et les interactions des protéines.

Certaines enzymes protéolytiques, telles que les métalloprotéinases matricielles (MMP), jouent un rôle dans le remodelage tissulaire.
Comprendre et contrôler l’activité des protéases est important dans les applications liées à la cicatrisation des plaies et à l’ingénierie tissulaire.

Certaines enzymes protéolytiques sont utilisées comme outils de diagnostic.
Par exemple, l’antigène prostatique spécifique (PSA) est une protéase utilisée comme biomarqueur du cancer de la prostate.

Les enzymes protéolytiques sont utilisées dans les processus de bioremédiation pour dégrader les protéines présentes dans les déchets organiques.
Cela peut être utile dans les efforts de nettoyage de l’environnement.

Les enzymes protéolytiques sont parfois utilisées dans les cosmétiques à des fins d'exfoliation.
Ils peuvent aider à éliminer les cellules mortes de la peau et à améliorer la texture de la peau.

Les enzymes protéolytiques sont présentes dans tous les organismes, des procaryotes aux eucaryotes en passant par les virus.
Ces enzymes sont impliquées dans une multitude de réactions physiologiques depuis la simple digestion des protéines alimentaires jusqu'aux cascades hautement régulées (par exemple, la cascade de la coagulation sanguine, le système du complément, les voies de l'apoptose et la cascade d'activation de la prophénoloxydase des invertébrés).

Les enzymes protéolytiques peuvent soit rompre des liaisons peptidiques spécifiques (protéolyse limitée), en fonction de la séquence d'acides aminés d'une protéine, soit décomposer complètement un peptide en acides aminés (protéolyse illimitée).
L'activité peut être un changement destructeur (abolir la fonction d'une protéine ou digérer la protéase jusqu'à ses principaux composants), la protéase peut être une activation d'une fonction, ou la protéase peut être un signal dans une voie de signalisation.

Les enzymes protéolytiques sont utilisées dans tout l’organisme pour divers processus métaboliques.
Les enzymes protéolytiques acides sécrétées dans l'estomac (comme la pepsine) et les enzymes protéolytiques sérine présentes dans le duodénum (trypsine et chymotrypsine) nous permettent de digérer les protéines présentes dans les aliments.

Les enzymes protéolytiques présentes dans le sérum sanguin (thrombine, plasmine, facteur Hageman, etc.) jouent un rôle important dans la coagulation sanguine, ainsi que dans la lyse des caillots et dans le bon fonctionnement du système immunitaire.
D'autres enzymes protéolytiques sont présentes dans les leucocytes (élastase, cathepsine G) et jouent plusieurs rôles différents dans le contrôle métabolique.

Certains venins de serpent sont également des enzymes protéolytiques, comme l'hémotoxine de la vipère, et interfèrent avec la cascade de coagulation sanguine de la victime.
Les enzymes protéolytiques déterminent la durée de vie d'autres protéines jouant des rôles physiologiques importants comme les hormones, les anticorps ou d'autres enzymes.

Il s’agit de l’un des mécanismes de régulation « d’activation » et de « désactivation » les plus rapides de la physiologie d’un organisme.
Les bactéries sécrètent des enzymes protéolytiques pour hydrolyser les liaisons peptidiques des protéines et donc décomposer les protéines en leurs acides aminés constitutifs.

Les enzymes protéolytiques bactériennes et fongiques sont particulièrement importantes pour les cycles mondiaux du carbone et de l’azote dans le recyclage des protéines, et cette activité tend à être régulée par les signaux nutritionnels de ces organismes.
L’impact net de la régulation nutritionnelle de l’activité des protéases parmi les milliers d’espèces présentes dans le sol peut être observé au niveau global de la communauté microbienne, à mesure que les protéines sont dégradées en réponse à une limitation en carbone, en azote ou en soufre.

Les génomes de certains virus codent pour une polyprotéine massive, qui a besoin d'une protéase pour la diviser en unités fonctionnelles (par exemple le virus de l'hépatite C et les picornavirus).
Ces enzymes protéolytiques (par exemple la protéase TEV) ont une spécificité élevée et ne coupent qu'un ensemble très restreint de séquences de substrat.

Ils constituent donc une cible courante pour les inhibiteurs de protéase.
Les cellules produisent souvent des inhibiteurs de protéase pour réguler l’activité des enzymes protéolytiques.

Ces inhibiteurs se lient aux enzymes protéolytiques et les empêchent de catalyser l'hydrolyse des liaisons peptidiques.
Cette régulation est cruciale pour maintenir un équilibre dans les processus cellulaires.

Une activité altérée des enzymes protéolytiques est associée à la progression du cancer.
Les métalloprotéinases matricielles (MMP), par exemple, sont impliquées dans l’invasion tumorale et les métastases.

Les enzymes protéolytiques, telles que les protéasomes, sont impliquées dans l'élimination des protéines mal repliées.
La dérégulation des enzymes protéolytiques a été associée à des troubles neurodégénératifs comme la maladie d'Alzheimer et la maladie de Parkinson.

Les protéasomes sont de grands complexes protéiques responsables de la dégradation des protéines inutiles ou endommagées dans la cellule.
Ils jouent un rôle crucial dans le maintien de l’homéostasie cellulaire en régulant la concentration de protéines spécifiques.

Dans le contexte de l’infection par le VIH (virus de l’immunodéficience humaine), les inhibiteurs de protéase constituent une classe de médicaments antirétroviraux.
Ils bloquent l’activité de l’enzyme protéase du VIH, empêchant ainsi le virus de produire des particules infectieuses.

Les scientifiques s'engagent dans l'ingénierie des protéases pour modifier et optimiser les enzymes protéolytiques pour des applications spécifiques.
Cela implique de modifier leur spécificité de substrat, leur stabilité ou d'autres propriétés à des fins industrielles ou thérapeutiques.

Les chercheurs utilisent les enzymes protéolytiques comme outils en laboratoire pour étudier la structure et la fonction des protéines.
Des techniques telles que la protéolyse limitée impliquent de traiter des protéines avec des enzymes protéolytiques pour identifier des domaines structurels ou déterminer des changements de conformation.

Les enzymes protéolytiques sont utilisées dans l’industrie alimentaire à diverses fins.
Par exemple, ils peuvent être utilisés dans la production de certains aliments pour rehausser la saveur ou la texture.

De plus, les enzymes protéolytiques jouent un rôle dans l’attendrissement de la viande.
Les caspases, une famille d'enzymes protéolytiques à cystéine, jouent un rôle central dans le processus d'apoptose.

Ils clivent des protéines spécifiques, conduisant au démantèlement contrôlé de la cellule.
Les enzymes protéolytiques sont des cibles pour la découverte de médicaments.

Le développement de médicaments qui inhibent ou activent spécifiquement certaines enzymes protéolytiques peut avoir des implications thérapeutiques, en particulier dans les conditions où une dérégulation de la protéase est impliquée.
L'activité des enzymes protéolytiques est inhibée par les inhibiteurs de protéase.

Un exemple d’inhibiteurs de protéase est la superfamille des serpines.
La protéase comprend l'alpha 1-antitrypsine (qui protège le corps des effets excessifs des propres enzymes protéolytiques inflammatoires de la protéase), l'alpha 1-antichymotrypsine (qui fait de même), l'inhibiteur C1 (qui protège le corps de l'activation excessive du complément de la protéase déclenchée par la protéase. système), l'antithrombine (qui protège l'organisme d'une coagulation excessive), l'inhibiteur de l'activateur du plasminogène-1 (qui protège l'organisme d'une coagulation inadéquate en bloquant la fibrinolyse déclenchée par la protéase) et la neuroserpine.

Les inhibiteurs naturels de protéase comprennent la famille des protéines lipocalines, qui jouent un rôle dans la régulation et la différenciation cellulaire.
Les ligands lipophiles, attachés aux protéines lipocalines, possèdent des propriétés inhibant la protéase tumorale.

Les inhibiteurs naturels de la protéase ne doivent pas être confondus avec les inhibiteurs de la protéase utilisés en thérapie antirétrovirale.
Certains virus, parmi lesquels le VIH/SIDA, dépendent des enzymes protéolytiques dans leur cycle de reproduction.

Ainsi, des inhibiteurs de protéase sont développés comme agents thérapeutiques antiviraux.
D'autres inhibiteurs naturels de protéase sont utilisés comme mécanismes de défense.

Des exemples courants sont les inhibiteurs de trypsine trouvés dans les graines de certaines plantes, le plus remarquable pour les humains étant le soja, une culture vivrière majeure, où ils agissent pour décourager les prédateurs.
Le soja cru est toxique pour de nombreux animaux, y compris les humains, jusqu'à ce que les inhibiteurs de protéase qu'ils contiennent soient dénaturés.

Les enzymes protéolytiques sont essentielles à de nombreux processus importants de votre corps.
On les appelle également peptidases ou protéinases.

Dans le corps humain, ils sont produits par le pancréas et l’estomac.
Bien que les enzymes protéolytiques soient surtout connues pour leur rôle dans la digestion des protéines alimentaires, elles remplissent également de nombreuses autres fonctions essentielles.
Par exemple, ils sont essentiels à la division cellulaire, à la coagulation sanguine, à la fonction immunitaire et au recyclage des protéines, entre autres processus vitaux (1Trusted Source).

Comme les humains, les plantes dépendent également des enzymes protéolytiques tout au long de leur cycle de vie.
Non seulement ces enzymes sont nécessaires à la croissance et au développement adéquats des plantes, mais elles contribuent également à les maintenir en bonne santé en agissant comme un mécanisme de défense contre les ravageurs comme les insectes.

Il est intéressant de noter que les gens peuvent bénéficier de l’ingestion d’enzymes protéolytiques d’origine végétale.
En conséquence, les suppléments d’enzymes protéolytiques peuvent contenir des enzymes d’origine animale et végétale.
Les enzymes protéolytiques (à la fois endo- et exotypes sans nom systémique) sont des enzymes dérivées commercialement du champignon Aspergillus oryzae ou Aspergillus niger, via un processus de fermentation.

Pendant la phase de récupération de la production, les fabricants détruisent les champignons de départ, A. oryzae ou A. niger, avant de retirer la matière non protéique de la préparation de protéase.
Les enzymes protéolytiques sont récupérées du bouillon de fermentation dans une solution aqueuse, puis traitées jusqu'à l'état séché.

Utilisations des enzymes protéolytiques :
La protéase de Bacillus amyloliquefaciens a été utilisée pour l'épilage des cuirs et peaux.
La protéase a également été utilisée dans une étude visant à étudier la formation de liaisons peptidiques en utilisant l'ester carbamoylméthylique comme donneur d'acyle.
Le domaine de la recherche sur les protéases est énorme.

Depuis 2004, environ 8 000 articles liés à ce domaine ont été publiés chaque année.
Les enzymes protéolytiques sont utilisées dans l’industrie, en médecine et comme outil de recherche biologique fondamentale.

Les enzymes protéolytiques peuvent être utilisées pour perturber les biofilms, qui sont des communautés de micro-organismes enfermés dans une matrice protectrice.
La destruction de la matrice du biofilm aide à lutter contre les infections bactériennes.

Les chercheurs explorent l’utilisation des enzymes protéolytiques pour des thérapies ciblées contre le cancer.
Les enzymes protéolytiques peuvent être conçues pour activer sélectivement des promédicaments dans les cellules cancéreuses, minimisant ainsi les dommages causés aux tissus sains.

Les inhibiteurs de protéase sont étudiés pour une utilisation en agriculture afin de protéger les cultures contre les ravageurs.
Ces inhibiteurs interfèrent avec les processus digestifs de certains insectes, offrant ainsi une potentielle stratégie de lutte antiparasitaire écologique.

Les enzymes protéolytiques sont utilisées dans les produits de soin pour leurs propriétés exfoliantes.
Ils aident à éliminer les cellules mortes de la peau, favorisant le renouvellement cutané et réduisant potentiellement l’apparence des rides et ridules.

Les enzymes protéolytiques sont incorporées dans des biocapteurs pour détecter des biomolécules spécifiques.
Les changements de fluorescence ou d'autres propriétés résultant de l'activité de la protéase peuvent être utilisés comme signaux pour la présence de certaines substances.

Les enzymes protéolytiques sont utilisées dans les processus biocatalytiques de synthèse organique.
Ils peuvent catalyser des réactions spécifiques avec une sélectivité élevée, offrant ainsi des alternatives respectueuses de l’environnement aux méthodes chimiques traditionnelles.

Certaines enzymes protéolytiques sont explorées comme biopesticides pour lutter contre les insectes nuisibles en agriculture.
Ces enzymes protéolytiques peuvent perturber les processus digestifs des insectes, entraînant une réduction de l’alimentation et de la croissance.

Les enzymes protéolytiques associées au développement et à la progression de la tumeur peuvent être ciblées à des fins d'imagerie.
Les agents d'imagerie activés par la protéase peuvent fournir des informations sur la présence et l'activité des enzymes protéolytiques dans les tissus cancéreux.

Les enzymes protéolytiques et leurs substrats sont étudiés en tant que biomarqueurs potentiels de diverses maladies.
La détection de modèles d'activité spécifiques de la protéase peut faciliter le diagnostic précoce de la maladie.

Comprendre les variations individuelles de l'activité des protéases peut contribuer au développement d'une médecine personnalisée.
L'adaptation des traitements basés sur les profils de protéase pourrait améliorer l'efficacité thérapeutique.

Les enzymes protéolytiques sont étudiées pour la surveillance environnementale, en particulier pour l'évaluation de la qualité de l'eau.
Des changements dans l'activité des protéases peuvent indiquer une contamination ou des changements dans les communautés microbiennes.

Les enzymes protéolytiques digestives font partie de nombreux détergents à lessive et sont également largement utilisées dans l'industrie du pain comme améliorant de panification.
Diverses enzymes protéolytiques sont utilisées en médecine à la fois pour leur fonction native (par exemple, le contrôle de la coagulation sanguine) ou pour des fonctions complètement artificielles (par exemple, pour la dégradation ciblée de protéines pathogènes).

Des enzymes protéolytiques hautement spécifiques telles que la protéase TEV et la thrombine sont couramment utilisées pour cliver les protéines de fusion et les étiquettes d'affinité de manière contrôlée.
Des solutions végétales contenant des protéases appelées présure végétarienne sont utilisées depuis des centaines d'années en Europe et au Moyen-Orient pour fabriquer des fromages casher et halal.

La présure végétarienne de Withania coagulans est utilisée depuis des milliers d'années comme remède ayurvédique pour la digestion et le diabète dans le sous-continent indien.
La protéase est également utilisée pour fabriquer du Paneer.

Les enzymes protéolytiques sont utilisées dans l'industrie textile pour des processus tels que le désencollage et la finition.
Ils aident à éliminer les fibres indésirables et améliorent la texture et l'apparence des tissus.

Les enzymes protéolytiques peuvent être utilisées dans la production de biocarburants.
Ils contribuent à la dégradation des parois cellulaires végétales, libérant des sucres qui peuvent être fermentés en biocarburants.

Les enzymes protéolytiques sont utilisées dans l'industrie du cuir pour faciliter l'épilage et l'assouplissement des peaux pendant le traitement du cuir.
Les enzymes protéolytiques peuvent être utilisées dans l'industrie alimentaire pour modifier les propriétés de certains aliments, par exemple en améliorant la solubilité des protéines dans les boissons ou en améliorant la texture des produits de boulangerie.

Certaines enzymes protéolytiques, comme la thrombine, sont utilisées en médecine comme agents anticoagulants.
Ils sont utilisés dans les thérapies anticoagulantes pour prévenir la formation anormale de caillots sanguins.

Les enzymes protéolytiques sont utilisées pour hydrolyser les protéines en peptides et acides aminés plus petits, contribuant ainsi au développement de saveurs savoureuses dans les aliments transformés.
Les enzymes protéolytiques peuvent être appliquées dans l’industrie des pâtes et papiers pour modifier les caractéristiques de la pâte à papier, conduisant ainsi à une meilleure qualité du papier.

Les maladies inflammatoires, telles que la polyarthrite rhumatoïde, impliquent une activité excessive des protéases.
Des thérapies visant à moduler l’activité des protéases sont à l’étude pour des options thérapeutiques potentielles.

Les enzymes protéolytiques sont utilisées dans les formulations d'aliments pour poissons pour améliorer la digestibilité des protéines, favorisant ainsi une meilleure croissance et une meilleure santé des poissons d'élevage.
Les enzymes protéolytiques sont étudiées pour leur utilisation potentielle dans la décontamination des surfaces exposées à des agents de guerre biologique.

Ils peuvent décomposer les protéines de ces agents, les rendant ainsi inoffensifs.
Les enzymes protéolytiques sont utilisées dans divers tests et analyses biochimiques pour étudier la cinétique des enzymes, la spécificité du substrat et d'autres aspects des réactions enzymatiques.

Les enzymes protéolytiques sont couramment utilisées dans les détergents à lessive et les détachants.
Ils aident à éliminer les taches à base de protéines, telles que le sang, l'herbe et la nourriture, ce qui les rend plus faciles à éliminer.

Attendrissement de la viande : les enzymes protéolytiques sont utilisées pour attendrir la viande en décomposant le collagène et les tissus conjonctifs, améliorant ainsi la texture de la viande.
Les enzymes protéolytiques sont utilisées dans la production de fromage pour modifier la texture et la saveur.

Lors du brassage, les enzymes protéolytiques peuvent être utilisées pour décomposer les protéines susceptibles de provoquer un trouble dans la bière. En pâtisserie, ils peuvent améliorer la texture de la pâte.
Les enzymes protéolytiques sont utilisées en biotechnologie pour la purification des protéines.
Ils peuvent être utilisés pour cliver les étiquettes de fusion des protéines recombinantes, facilitant ainsi l'isolement et la purification de la protéine souhaitée.

Les inhibiteurs de protéase sont essentiels au développement de médicaments.
Par exemple, les inhibiteurs de protéase sont utilisés dans le traitement du VIH en inhibant la protéase virale, empêchant ainsi la maturation de nouvelles particules virales.
Les enzymes protéolytiques peuvent être utilisées dans les thérapies enzymatiques de remplacement pour les personnes atteintes de certains troubles génétiques entraînant une activité déficiente de la protéase.

Les enzymes protéolytiques sont des outils précieux dans la recherche en biologie moléculaire.
Des techniques telles que la protéolyse limitée sont utilisées pour étudier la structure, la fonction et les interactions des protéines.

Les enzymes protéolytiques, telles que les métalloprotéinases matricielles (MMP), jouent un rôle dans le remodelage tissulaire.
Comprendre et contrôler l’activité des protéases est important dans les applications liées à la cicatrisation des plaies et à l’ingénierie tissulaire.

Certaines enzymes protéolytiques, comme l'antigène prostatique spécifique (PSA), sont utilisées comme biomarqueurs diagnostiques pour certaines conditions médicales, comme le cancer de la prostate.
Les enzymes protéolytiques sont utilisées dans les processus de bioremédiation pour dégrader les protéines présentes dans les déchets organiques, contribuant ainsi aux efforts de nettoyage de l'environnement.

Les enzymes protéolytiques sont parfois utilisées dans les cosmétiques à des fins d'exfoliation.
Ils peuvent aider à éliminer les cellules mortes de la peau et à améliorer la texture de la peau.
Dans certaines conditions médicales, un traitement enzymatique substitutif impliquant des enzymes protéolytiques peut être utilisé pour compléter une activité enzymatique déficiente ou manquante dans le corps.

Classification des enzymes protéolytiques :
Les enzymes protéolytiques sont divisées en deux catégories : les exopeptidases et les endopeptidases.
Les exopeptidases n'agissent que sur les liaisons peptidiques C-terminales ou N-terminales du substrat, l'endopeptidase ne peut hydrolyser que les liaisons peptidiques à l'intérieur de la protéine macromoléculaire et est une véritable protéase.

Il existe diverses méthodes de classification des protéases, mais elles ne sont pas parfaites, certaines en fonction du centre actif ou du mode d'action, mais également en fonction de la valeur optimale du pH, en fonction du centre actif.

Les enzymes protéolytiques peuvent être divisées en quatre classes selon le centre actif :
(1) Enzymes protéolytiques sérine
(2) enzymes protéolytiques aspartiques
(3) enzymes protéolytiques de cystéine
(4) Enzymes métalloprotéolytiques.

Les enzymes sérine protéase sont largement présentes dans le pancréas animal, les bactéries, les moisissures, le centre actif contient des résidus de sérine, l'activité enzymatique peut être du fluorure de diisopropylphosphoryl (DFP), du fluorure de benzène méthylsulfonyle (PMSF) et des inhibiteurs de pomme de terre (PI) et d'autres inhibitions spécifiques.
Le pH optimal de l'enzyme est la protéase alcaline à 9,5 ~ 10,5, mais certaines enzymes protéolytiques à sérine sont des enzymes protéolytiques neutres, et certaines enzymes contiennent également des résidus de cystéine en raison du centre actif, la protéase peut être inhibée par le réactif thiol au chlore mercure benzoïque. acide (PCMB).

La spécificité du substrat est similaire à celle de la trypsine du chyme.
Les métalloprotéinases, ce type de protéase est principalement une protéase neutre, le pH optimal est de 7 à 8, la plupart du centre actif contient du Zn2 et d'autres métaux divalents, peut être soumis à l'agent chélateur des métaux EDTA ou à la phénanthroline (O-phénanthroline, OP) l'inhibition de ces enzymes protéolytiques sont moins stables, d'utilisation limitée et moins importantes que les enzymes protéolytiques alcalines et acides.

Les métalloprotéinases comprennent également la protéase alcaline de Pseudomonas aeruginosa, le venin de serpent et la collagénase.
Les enzymes protéolytiques microbiennes métallo-neutres, telles que les enzymes protéolytiques neutres bactériennes et fongiques, peuvent cliver les liaisons peptidiques amino-terminales composées de résidus hydrophobes ou d'autres acides aminés.
La pepsine de protéase d'acide aspartique, la protéase acide fongique est le centre actif contenant la protéase d'acide aspartique, le pH optimal de ce type d'enzyme est de 2,0 ~ 5,0, en stabilité acide, inactivation rapide de l'enzyme à un pH supérieur à 6, PI 3-4,5, L'ester méthylique de diazoacétyl-N-leucine (DAN) et le 1, 2-époxy-3-(p-nitrophényl) propane (EPNP), est un inhibiteur obligatoire de ce type d'enzyme, le poids moléculaire de l'enzyme étant de 30 à 45 kDa.

La cystéine protéase, ce type d'enzyme est également appelée thiol protéase. On sait que ce type d'enzyme compte environ 20 familles et existe largement chez les procaryotes et les eucaryotes. Le centre actif de la protéase contient une paire d'acides aminés qui est Cys-His, différents groupes d'enzymes avant et après Cys et His dans un ordre différent.
Généralement, ces enzymes nécessitent la présence d'un agent réducteur, tel que HCN ou la cystéine, pour être actives.

Spécificité des enzymes protéolytiques :
La spécificité de la protéase s'exprime dans la sélectivité de la liaison peptidique du substrat. La protéase n'est pas seulement affectée par les résidus d'acides aminés sur un ou les deux côtés de la liaison peptidique au point de clivage, mais aussi parfois par plusieurs unités de résidus d'acides aminés séparées. du point d'action, et également affecté par la longueur de la liaison peptidique.
L'étude de la spécificité des Enzymes Protéolytiques est généralement réalisée avec des substrats synthétiques de séquence connue, pour les raisons ci-dessus, souvent incompatibles avec l'hydrolyse des protéines naturelles.

Production d'enzymes protéolytiques :
La protéase est largement utilisée, ce qui simplifie non seulement le processus de production des industries concernées, mais permet également d'économiser des investissements. La protéase réduit la consommation de matières premières, améliore le rendement et la qualité des produits et contribue positivement à l'amélioration de la protection de l'environnement et à la réduction du dioxyde de carbone. émissions.
Les facteurs affectant la production de protéase microbienne sont très complexes, le même micro-organisme, en raison de différentes conditions de culture, peut produire une variété de protéase, la plupart des bacilles sont aérobies, non toxiques et non pathogènes, faciles à cultiver.
La composition enzymatique de la protéase microbienne est très complexe, la même électrophorèse enzymatique, la chromatographie et d'autres techniques de séparation, mais peut également séparer un certain nombre de poids moléculaire, la composition en acides aminés, le pH optimal, la température et le point isoélectrique de composition différente, les similitudes et les différences dans le la séquence d'acides aminés et la conformation de l'enzyme peuvent également être observées par la réaction immunologique antigène-anticorps.

Profil de sécurité des enzymes protéolytiques :
Les enzymes protéolytiques peuvent être irritantes pour la peau et les yeux, en particulier à des concentrations plus élevées.
Le contact direct avec des solutions contenant de la protéase peut entraîner des rougeurs, des démangeaisons ou une irritation.
Un équipement de protection individuelle (EPI) approprié doit être utilisé lors de la manipulation de ces enzymes.

L'inhalation de poussières ou d'aérosols contenant de la protéase peut entraîner une sensibilisation respiratoire chez certaines personnes.
Une ventilation et une protection respiratoire adéquates peuvent être nécessaires dans les situations où des aérosols sont générés.
Certaines personnes peuvent développer des réactions allergiques aux enzymes protéolytiques.

Une sensibilisation à ces enzymes peut survenir suite à une exposition répétée, et les personnes ayant des antécédents d'allergies ou d'asthme peuvent être plus sensibles.
L'ingestion d'enzymes protéolytiques peut entraîner une irritation et une sensibilisation du tractus gastro-intestinal.
Ceci est pertinent dans les industries où les travailleurs peuvent être exposés à des substances contenant des protéases.

Les travailleurs des secteurs tels que la biotechnologie, les produits pharmaceutiques et la transformation des aliments peuvent être confrontés à une exposition professionnelle aux enzymes protéolytiques.
Des mesures de sécurité appropriées, notamment une formation, des EPI et des contrôles techniques, doivent être mises en œuvre pour minimiser les risques.
Dans certaines applications, telles que la biocatalyse ou l'ingénierie des protéines, les enzymes protéolytiques peuvent être utilisées pour catalyser des réactions spécifiques.

Identifiants des enzymes protéolytiques :
Nom chimique : PROTÉASE
Numéro CBN : CB5670040
Poids moléculaire : 0
Numéro MDL : MFCD01940183

Propriétés des enzymes protéolytiques :
température de stockage : 2-8°C
solubilité : H2O : 5-20 mg/mL
forme : poudre
Couleur blanche
FDA 21 CFR : 310,545
Scores alimentaires de l'EWG : 1

Solubilité : H2O : 5-20 mg/mL
Aspect : poudre
Couleur blanche
Conditions de stockage : 2-8 °C

Spécifications des enzymes protéolytiques :
Aspect : Poudre blanche
Analyse : 99 % min
 

Bu internet sitesinde sizlere daha iyi hizmet sunulabilmesi için çerezler kullanılmaktadır. Çerezler hakkında detaylı bilgi almak için Kişisel Verilerin Korunması Kanunu mevzuat metnini inceleyebilirsiniz.